日本交通政策研究会

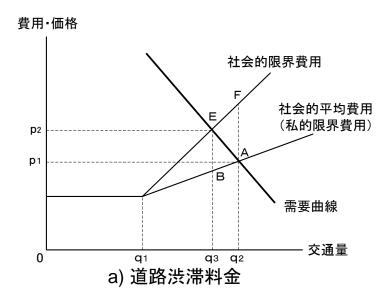
混雑課金からスマートシティへ

~シンガポールのERP~

三菱重工機械システム

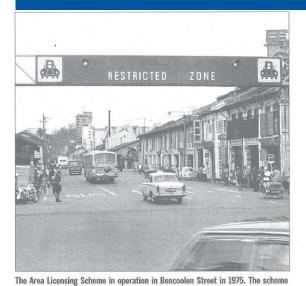
早川祥史

2019年10月28日


1970年代 自動車が増加する予測から、自動車の所有と公平な道路利用の制度へ

渋滞課金の背景

渋滞課金の背景


- 1961年に経済学者のウォルターズ (A.A.Walters)により渋滞課金理論が提唱され、その後英国を中心に研究が行われた。
- 1964年にスミード・レポート(Smeed's Report) が公表され、渋滞に対する交通施策として確立されたが、実証までには至らず。
- 1975年のシンガポールにおいて、ステッカー 方式のALS(Area License Scheme)が導入され、その効果が初めて実証された。
- 1998年に電子式のERP(Electronic Road Pricing)へ切り替えが行われ、より公平性、利 便性、信頼性の向上が計られた。
 - > 各課金ポイント毎に交通量に応じた課金額の 設定が可能
 - ▶ 時間毎の交通量に応じた課金額の設定が可能
 - 車種毎(乗用車面積に比例)の課金額の設定 が可能
 - プリペイドカードによる利用者支払いが可能
 - > 課金信頼性は99.999%以上
- その後、2003年にロンドン、2006年にストック ホルムにて導入された。

b) ストックホルム渋滞課金

1975年 マニュアル式ロードプライシングシステム運用開始 渋滞解消を目的に、市内中心部への流入車両に対して課金するシステム

導入当初 (1975年)

L
3

Type of licence	Whole-Day ALS & RPS (ECP & PIE only)		Part-Day ALS & RPS	
Vehicles	Daily	Monthly	Daily	Monthly
Motorcycles	S\$1*	S\$20*	S\$0.70	S\$14
Company cars	S\$6	S\$120	S\$4	S\$80
Other Vehicles	S\$3	S\$60	S\$2	S\$40

	ALS			
Day	Whole-Day Licence	Part-Day Licence		
Mondays to Fridays	7.30am-7.00pm	9.30am-4.30pm		
Saturdays	7.30am-2.00pm	9.30am-2.00pm		

より公平な道路課金を目指して、ERP(Electronic Road Pricing)へ移行

ALS=1975-

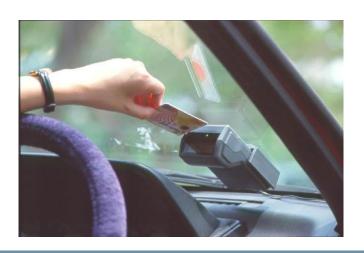
ERP=1998, 9-

- ステッカー事前購入

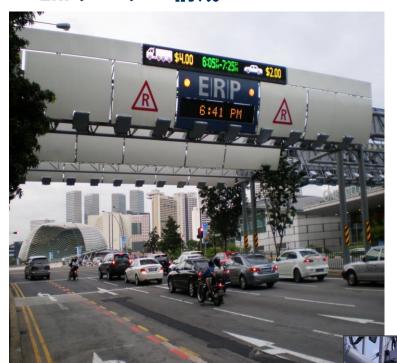
- 車載器 + プリペイドカード

- 警官が違反車両を 目視チェック

- 電子式で違反車両を自動取締り


- ラッシュ時、非ラッシュ時の 2種の課金額のみ

- 車種、曜日、時刻、場所によっ て木目細かい課金額が設定可能



ALS: Area Licensing Scheme

ERPシステム構成

要求仕様

- 課金精度 ≥ 99.999%
- 車両検知精度 ≦ 250mm
- 最高速度 ≥ 120Km/h(正常車両)、 180Km/h (不正車両)
- 車両特定精度 ≥ 99%(RF通信あり)

ehicle Prese

Detector

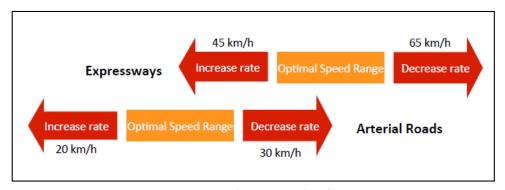
For heavy Goods Vehicle

lights

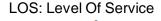
For very Heavy Goods Vehicle

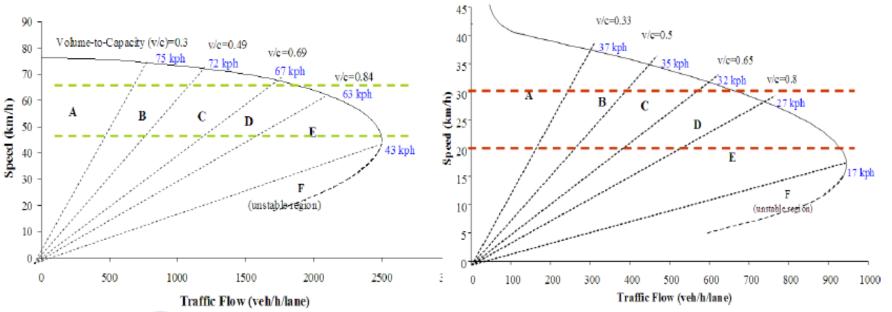
nforcemen

Camera


CashCard

Outstation Unit


On-Board Unit


【課金による交通流制御】

- サービスレベル(LOS)はEの範囲となるよう四半期のデータを基に課金額を設定
- ✓ 高速道では45Km/h以下で課金額を上げ、 65km/h以上で下げる。
- ✓ 一般道では20km/h以下で課金額を上げ、 30km/h以上で下げる。

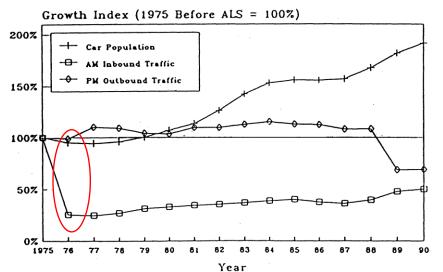
b) 交通流制御の概念

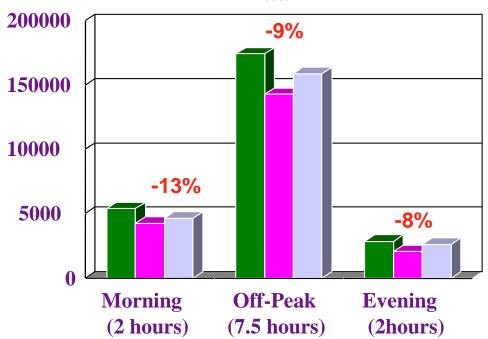
a) 高速道での交通量 - 速度曲線

c) 一般道での交通量 - 速度曲線

出典:LTA資料

渋滞課金の導入効果


•1975: After ALS


 \Rightarrow -75%

•1998: After ERP

 \Rightarrow -8 \sim -13%

BeforeAfterend-2000

出典:LTA

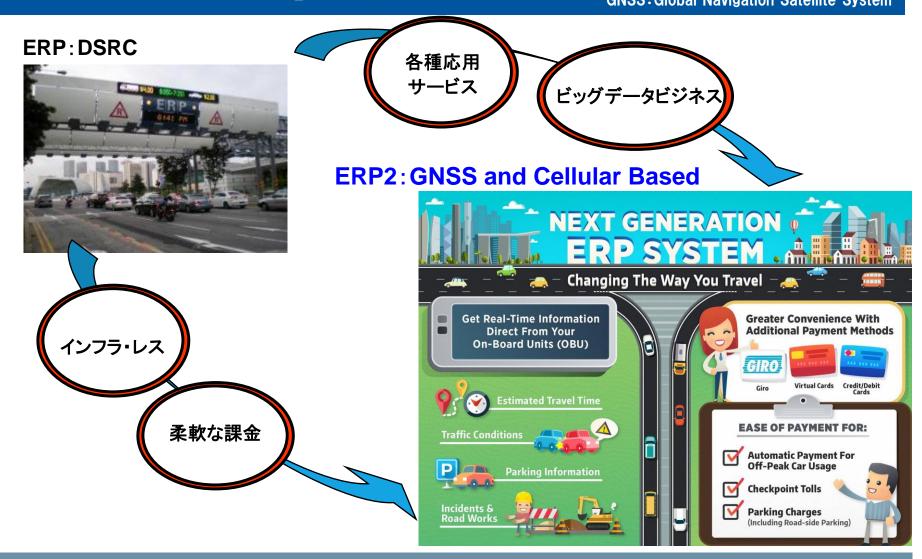
駐車場における課金や入退管理等を行い、駐車場における利便性向上を実現

EPS: Electronic Parking System

273

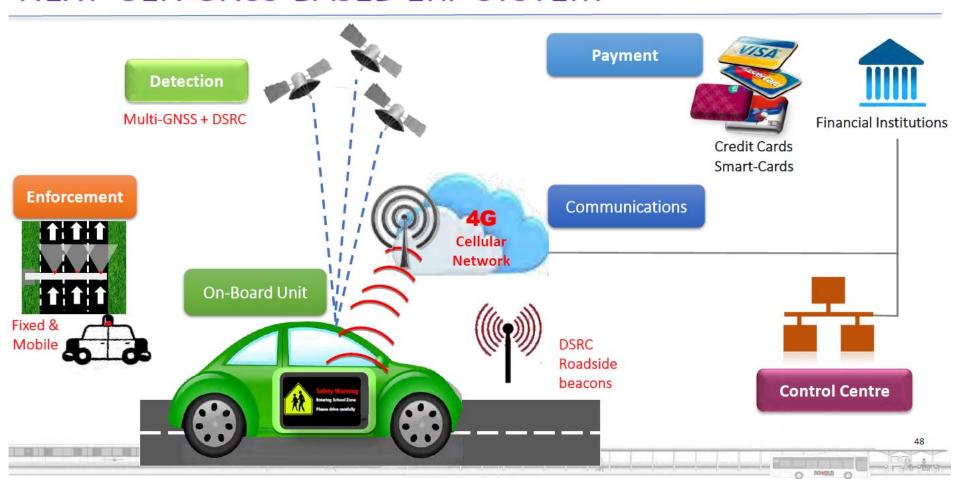
2002 2005 2008 2011 2013 2014 2015

200

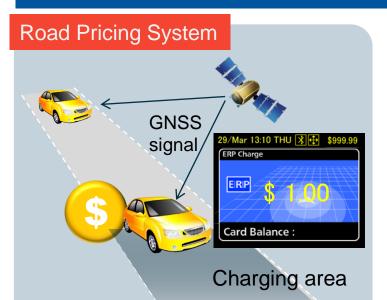


2938

全島課金が議論され始めると

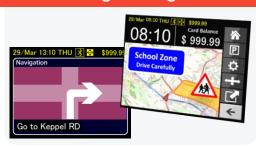


シンガポール政府が2014年3月に、世界初のGNSS衛星を利用した測位による都市型自律方式課金システム「次世代ERP」導入を発表 GNSS: Global Navigation Satellite System



次世代道路課金システム構成図

NEXT-GEN GNSS-BASED ERP SYSTEM


様々な道路交通アプリケーションへの応用が可能

Navi. & Digital-regulation

expand ability

Fleet management

バス

タクシー

トラック

V2X service

国家プロジェクト(Smart Nation)では、交通データ含めたオープンデータを整備

Smart Nationにおける交通の5分野の取り組み

Autonomous Vehicles

Contactless fare payment for public transport

On-demand shuttle

Open Data & Analytics for Urban Transportation

Spearheading research in standards for SDVs

【LTAによる交通政策】

- 匿名化されたデータを分析して交通の課題を解決 バスの利用者混雑92%解消、平均待ち時間3~7分短縮 気象データと組み合わせた交通状況の分析
- LTAの陸上輸送DataMallを公開 ダウンロードされたデータは1か月あたり6億件
- 次世代のプローブデータは、リアルタイムに交通状況をより正確に把握できる。 信号機のタイミング調整 バスへの優先信号機など

- ・シンガポールでは、公平な道路利用を実現するため、自動車税 (車の所有)と道路課金(車の利用)に総合な視点で取り組んでいる。
- ・シンガポールの道路課金はマニュアル方式(ALS)に始まり、 ICT技術の発達に伴い自動化されたERPへ更新、 さらに次世代では多様な道路サービスに対応できる。
 - 1) すべての道路ネットワークを対象とした道路課金の実現
 - 2) 車両プローブ情報による交通需要管理で道路ネットワークの利用を最適化
 - 3) 道路情報と交通情報を車両内端末へ提供するデジタルインフラ
 - ※ ニュージーランドで走行距離税はマニュアル方式から電子式で自動化
- 道路ネットワークの有効活用と維持は共通の課題である。

ご清聴有難うございました

早川 祥史 (yoshifumi_hayakawa@mhims.co.jp)

MOVE THE WORLD FORW➤RD

MITSUBISHI HEAVY INDUSTRIES GROUP